
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EDUCATION 1

A Scalable Operating System Experiment Platform
Supporting Learning Behavior Analysis

Lei Wang, Ziqi Zhen, Tianyu Wo, Bo Jiang , Member, IEEE, Hailong Sun , Member, IEEE, and Xiang Long

Abstract—Contribution: The design of an operating
system (OS) experiment course with a gentle learning curve is
proposed and a scalable OS experiment platform supporting
learning behavior analysis is presented.

Background: In the teaching practice of the OS experiment
course, several problems were faced. First, the learning curve
for the students is too steep. Second, the OS experiment is hard
to scale to a large number of students. Finally, it is difficult
to track the learning behaviors of the students and to provide
feedback to the teaching plan.

Intended Outcomes: By smoothing the learning curve and pro-
viding targeted and rapid feedback, students using the system can
more effectively master the knowledge of the OS by completing
experimental tasks.

Application Design: A large number of students can log in
to the experiment system and complete multiple labs online. In
addition to using automated testing to provide fast feedback,
the lab system also collects learning behavior data of the stu-
dents, enabling the teachers to analyze the data and adjust their
teaching plan accordingly.

Findings: The performance and learning-behavior data of the
students from 2015 to 2018 showed that the OS experiment is
effective to scale to a large number of students with satisfiable
teaching effectiveness.

Index Terms—Learning behavior, operating system (OS) exper-
iment, scalability.

I. INTRODUCTION

OPERATING system (OS) is one of the core courses
for computer science and engineering-related majors.

It is closely related to four knowledge areas proposed in
the Computer Science Curricula 2013 by ACM/IEEE-CS
Joint Task Force on Computing Curricula: system fun-
damentals (SFs), parallel and distributed computing (PD),
information assurance and security (IAS), and platform-based
development (PBD) [1]. While the OS theory courses famil-
iarize students with the main concepts, the OS experiment can
help students to understand the OS concepts at a deeper level
by building an OS by themselves [2]. Therefore, many top

Manuscript received August 15, 2019; revised December 13, 2019 and
February 6, 2020; accepted February 15, 2020. This work was supported in
part by the NSFC of China under Project 61672073, Project 61772056, and
Project 61690202, and in part by the Teaching Reform Funding of Beihang
University. (Corresponding author: Bo Jiang.)

The authors are with the School of Computer Science and Engineering,
Beihang University, Beijing 100083, China (e-mail: wanglei@buaa.edu.cn;
yradex@buaa.edu.cn; woty@act.buaa.edu.cn; jiangbo@buaa.edu.cn;
sunhl@buaa.edu.cn; long@buaa.edu.cn).

Digital Object Identifier 10.1109/TE.2020.2975556

computer science departments have attached great importance
to the experiment design of OS courses [3]–[10].

The OS experiment system proposed in this article was ini-
tially ported from the JOS experiment system [9] used in MIT
to MIPS architecture. The JOS OS was used by MIT in the
lab of the course OS Engineering [2]. The porting, begun in
2007, took several years to complete. In 2013, 20 top students
were selected to join the course and they all got excellent
results. In this class, most of the students completed all the
labs with good performance. However, when all the sopho-
more students in the department (with about 255 students)
joined the experiment course in 2014, only less than 25% of
the students successfully completed all the labs. An analysis of
the teaching process revealed the following challenges faced
by the OS experiment course.

First, the learning curve for most students is too steep.
When the number of students is large, the students naturally
differ in terms of ability and attitude. For those top stu-
dents, completing the OS experiment is never a big problem.
However, for most students, it is important to ensure the learn-
ing curve is not too steep so that they can keep up to complete
the labs.

Second, it is difficult to scale the OS experiment to a large
number of students. When the number of students grows large,
providing a scalable online OS experiment platform and eval-
uating the code of the students in each lab becomes nontrivial.
A scalable OS experiment platform must provide an integrated
development environment for the growing number of students.
Furthermore, within an online experiment platform, evaluat-
ing the code submitted by a large number of students must be
performed in a timely manner.

Third, it is difficult to get feedback from the learning pro-
cess of the students and adjust the teaching plan accordingly
in a short time. This is due to the lack of mechanisms in
the experimental environment to gather data on the students’
learning behavior.

In previous work, many effective OS experimental platforms
were proposed to help students learn OS by doing [4]–[10].
While most of the OS experiment courses corresponding to
these platforms provide detailed lab guidance or special assis-
tant software [5] to help students cope with the steep learning
curve, they were not specially designed to scale the experiment
course to a large number of students. Furthermore, although
learning behavior analysis for teaching improvement is exten-
sively studied in previous work [11]–[15], these works were
not targeted at teaching improvement of the OS experiment
course.

0018-9359 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0864-1665
https://orcid.org/0000-0001-7654-5574

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EDUCATION

In this article, to facilitate learning among average students,
the six labs within the OS experiment are carefully designed
so that they are easier at first but gradually become more and
more challenging. The guidebook for the experiment is also
carefully designed to guide students step by step to complete
the experiment. To scale the OS experiment to a large number
of students, a VM-based integrated development environment
within a private cloud is proposed for the students to program,
test, and debug. Furthermore, to reduce the code submission
and code evaluation overhead, a Git server and an automatic
code evaluation system are integrated into the experimentation
platform so that the dispatch of labs and the evaluation of the
code submitted by the students can be performed automatically
within a short time. Finally, to get feedback from the learning
process of the students, the behavior data of the students are
also collected within the integrated OS experiment platform
to facilitate analysis and continuous improvement.

The contributions of this article are twofold. First, an
integrated and scalable online OS experiment platform that
enables learning behavior analysis is presented. Second, based
on the learning data of 878 students from the OS experiment
course over four years, the teaching effectiveness of the OS
experiment course is thoroughly evaluated.

The organization of the remaining sections is as follows.
Section II presents the design of the OS experiment course,
which tries to make the learning curve of the course gentle.
Section III discusses how to scale the experiment to a large
number of students. Section IV presents the learning behav-
ior tracking system. Section V evaluates the overall teaching
effectiveness with a large-scale case study over four years.
Finally, Section VI presents related work and is followed by
the conclusion in Section VII.

II. MAKING THE LEARNING CURVE GENTLE

A. Curriculum Design

To make the learning curve of the OS experiment gentle,
the six labs are carefully designed with increasing but control-
lable difficulty. As the students go through the labs, they will
gradually build a small but complete OS.

In general, the students are asked to develop a small OS on
the MIPS platform. It includes six labs as shown in Fig. 1.
The details of lab 1–lab 6 are as follows.

1) Lab 1 (Boot and System Initialization): The student will
analyze the hardware boot process to understand the
linking, loading, and relocation of the OS kernel. They
will then implement the printf API via a serial port to
understand the core OS submodules.

2) Lab 2 (Memory Management): The student will under-
stand the layout of the MIPS memory and implement
the physical and virtual memory management module.

3) Lab 3 (Process Management): The student will imple-
ment clock interrupt handler and process management
functions.

4) Lab 4 (System Call): The student will understand the
system call mechanism on MIPS and implement several
system calls.

Fig. 1. Design of OS experiment.

5) Lab 5 (File System): The student will implement a sim-
ple file system.

6) Lab 6 (Shell): The student will implement a basic shell
and combine the work of all six labs to form a small OS.

Note that lab 5 and lab 6 are not mandatory to pass the
whole course. However, if students want to get a high score
for the whole course or if they have not got scores in previous
labs sufficient to pass the course, they must try their best to
perform well in lab 5 and lab 6. As shown in Fig. 1, the mod-
ules in blue are the new modules to implement, the modules in
yellow are the old modules to extend with more functionality
(e.g., interrupt in lab 4), and the modules in green are mod-
ules that remain unchanged in the corresponding lab. Each lab
contains two parts. One part is the before-class test; the other
part is the in-class test. All students must first pass the before-
class test (i.e., with scores higher than 60) before they can
take part in the in-class test. The before-class tests are more
like homework which students are encouraged to complete
independently; the in-class tests are more like exams, which
students must finish independently in class. The setup of the
two tests is to incentivize each student to finish the experiment
independently. If a student consults other students to finish the
before-class test, he will likely fail the in-class test.

The design of the experiment follows two basic principles.
First, the experiment follows an iterative development model.
The first few labs will build the core OS modules with key
functionality. More advanced features are added in the follow-
up labs to gradually form a small but complete OS. In this way,
the student will not be overwhelmed at the beginning by the
complexity of the OS. Second, the experiment course sets up
different goals for students with different capability. For the
in-class tests, several basic tests with moderate difficulty are
set up within each lab. The majority of the students need to
finish only the basic tests. In addition to the basic tests, ambi-
tious students get bonus points by finishing some challenging
extra tests.

B. Step-by-Step Guidebook

To further help the students to build the small OS and make
their learning curve gentle, a step-by-step guidebook [16] for

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SCALABLE OS EXPERIMENT PLATFORM SUPPORTING LEARNING BEHAVIOR ANALYSIS 3

the OS experiment is carefully composed. Following this book,
the students get the most important and relevant guidance they
need in time within each lab.

The idea of providing a step-by-step guidebook for the
beginners in a new computer science course is also empha-
sized by the work of Guzdial [17]. In particular, they maintain
that “putting introductory students in the position of discov-
ering information for themselves is a bad idea.” Furthermore,
Otero and Aravind [18] also suggested providing a step-by-
step guidebook to help the student build the minimal embed-
ded OS (MiniOS) from the ground up. They argued that
the challenges of the OS experiment course are substantially
different from what students have encountered in preceding
courses and “most students lack the experience, the patience,
and the right approach to meticulously construct and debug
low-level systems’ code.”

Within the course of this article, the students have similar
experiences. The students lack experience with the Git tool, the
UNIX programming environment, the programming of low-
level system code on MIPS architecture, and debugging of the
system code. Without proper guidance, many students easily
get lost during the labs. A comprehensive step-by-step guide-
book is therefore valuable to help them to overcome these
challenges. Since the design of the labs changes each year
(to prevent plagiarism), the guidance book must be updated
accordingly. To keep the content of the guidebook up to
date, the electronic version is dynamically published through
a central Web portal of the OS course.

III. SCALING THE OS EXPERIMENT PLATFORM

To scale the OS experiment to a large number of students,
an integrated online experiment environment is proposed. The
integrated online experiment environment combines the vir-
tual machines, version control system, and the automatic code
evaluation system within a private cloud to achieve scalability.
From the perspective of the students, the initial code release,
coding, compilation and execution, code submission, code
evaluation, and debugging are performed within the integrated
online experiment environment.

A. Overview of the OS Experiment Platform

In this section, an overview of the OS experiment platform
is presented. As shown in Fig. 2, the platform consists of the
following parts.

1) The virtual machine platform includes Linux OS, the
cross-compiler toolchain, and the MIPS simulator.

2) The Git server maintains a separate account for each
student. The initial code and the submitted code are all
maintained by the Git system.

3) The jump servers act as the portal for students to log in
to the experiment platform. The student must first log
in to the jump server before they log in to the VMs.
On the one hand, the jump server provides one layer of
security such that the VM will not be exposed directly.
On the other hand, the jump server is an ideal place to
track the learning behavior of the students.

Fig. 2. Integrated environment structure of OS experiments.

4) The automatic code evaluation system performs testing
on the submitted code to check for correctness. For each
task in each lab, a set of test cases is designed to check
against the submitted code. The evaluation of the submit-
ted code is automatically triggered by code submission
with a Git hook script deployed on the Git server.

5) The learning behavior tracking system collects the stu-
dents’ behavioral data during the experiment, and it is
distributed across the jump server (since 2018), the VMs
(2016–2017), and the Git server.

B. Virtual Machine Platform

The virtual machine platform provides students with the
environment and toolchains for coding, compilation, execu-
tion, and debugging. Within the virtual machine, a Linux
system, the Vi/Vim editors, debuggers, the Gxemul simula-
tor, and the GCC cross-compiler for MIPS are setup for use.
Each student has an independent account and a working direc-
tory within the Linux system on the virtual machine. The
students log in to the Linux system with an SSH client to
do the experiments. The working directory of the students is
securely separated to prevent plagiarism.

To solve the scalability problem, the virtual machine pro-
vides the students with a virtualized programming environment
while the Gxemul emulator provides the students with an
emulated execution environment. Therefore, the virtualization
and emulation techniques essentially decouple the experiment
platform from the specific hardware system. In this way, the
OS experiment platform can be scalable with the resources
available.

C. Git Server

The Git version control system is crucial to connect coding
and evaluation. Each student has their own code repository,
which is not accessible by other students. Each test (i.e., cod-
ing task) within a lab has its own branch. To start, each student
checks out the branch corresponding to the test to work with.
Then the student can code, compile, and test in their local
directory. When the student finishes the coding task, they can

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EDUCATION

submit it to the corresponding branch in the Git repository.
Upon submission, a Git hook script is triggered for execution
to perform automatic code evaluation. If the submitted code
passes the tests, the Git server will automatically push the next
task to the student.

D. Automatic Code Evaluation Tool

Providing feedback to the students on assessment tasks is
useful to improve their performance [19]. Evaluating the sub-
mitted code from so many students is also a time-consuming
activity. To make the OS experiment platform scalable to
a large number of students, it is crucial to make the code
evaluation task automatic.

When students submit their code through the Git server,
the code evaluation system is automatically triggered by a Git
hook script to obtain the code submitted from the students.
Then, the code evaluation system starts compiling and testing
the submitted code automatically with predefined test cases.
When the testing ends, the system generates a test report and
returns the evaluation results back to the student. If the code
passes the tests, the system automatically pushes the next task
to the student. Note: the score of a task is the sum of scores
for all the passing test cases. The total score for a task is 100;
a student passes the task if they have a score higher than 60.

IV. LEARNING BEHAVIOR TRACKING SYSTEM

To collect and analyze students’ behavioral data, a learning
behavior tracking system is built into the integrated environ-
ment. Based on the learning behavior data collected, learning
behavior analysis can be performed. Finally, the teaching plan
can be adapted based on the analysis results.

As discussed in the previous section, the learning behavior
tracking system is distributed across the jump server (since
2018), the VMs (2016–2017), and the Git server. The collected
data mainly contain three parts.

1) Login Activity and Command History: The collected
data include the timestamps of the activities of the stu-
dents, account information, and all user input and output.
Before 2018, the login information and command history
were collected within the virtual machines where stu-
dents logged in. Since the students used the SSH clients
to log in to the VMs, the SSH daemon was modified to
collect the login information. Since 2018, students must
first log in to the jump server before logging in to the vir-
tual machines. The login activity and command history
have been collected within the jump server since 2018.

2) Git Log: All Git operations used to interact with the Git
server by the students are recorded within Git log.

3) Code Evaluation Report: After a successful code sub-
mission through Git, a hook script is triggered to evalu-
ate the code submitted. The code submission information
and the evaluation results are recorded within the code
evaluation report.

V. EVALUATION

To evaluate the effectiveness of the proposed OS experiment
system as well as the course design with educational research

TABLE I
NUMBER OF STUDENTS AT DIFFERENT LEVELS

methodologies, a large-scale case study was conducted based
on the OS experiment course across four years (2015–2018).
The data on the learning behaviors and students’ scores were
collected and analyzed to evaluate the proposed OS experiment
system and course.

A. Setup of the Case Study

The case study contains two main parts. For the first part, the
scores of all students were tracked from 2015 to 2018. Then,
the performance of the students across four years was analyzed
to evaluate the overall teaching effectiveness of the course. For
the second part, the case study analyzed the detailed learn-
ing behavior data across four years. Then, the case study
tried to find trends within the data as well as correlations
between learning behavior and score. To measure the learning
performance of the students, the students are classified into
three categories based on their score: 1) excellent (90–100);
2) average (60–89); and 3) underperforming (0–59). This clas-
sification is also widely used in many universities in China for
grading.

The limitation of this case study is that it was conducted
solely within one university. A more comprehensive study con-
ducted across several universities using the proposed platform
may further strengthen the validity of the findings.

B. Evaluation of Overall Teaching Effectiveness and
Scalability of the Experiment Platform

To evaluate the overall teaching effectiveness, the number of
excellent, average, and underperforming students in four years
was collected and presented as shown in Table I. The ratio of
excellent students increases year by year. Although the number
of students doubled in 2018, the students graded as excellent
still reached the highest ratio. The number of underperforming
students also increased in 2017 and 2018.

There are two reasons for this. First, the difficulty of the
experiment has gradually increased since 2017. Second, more
students from other engineering majors (i.e., not computer sci-
ence) had the option to select the OS experiment course since
2016. In 2016, the number of students from other majors was
only 24 while in 2017, the number increased to 75. Due to
their relatively weak background in computer science, the per-
centage of underperforming students among them is relatively
higher. In general, despite the increase in the difficulty of the

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SCALABLE OS EXPERIMENT PLATFORM SUPPORTING LEARNING BEHAVIOR ANALYSIS 5

Fig. 3. Average login duration of students with different scores.

labs and the number of students over the years, the number of
excellent students gradually increased.

C. Learning Behavior Analysis

1) Analysis of Login Duration: Fig. 3 demonstrates how
long the students with different scores logged in to the inte-
grated experiment environment in various labs from 2015 to
2018. The x-axis shows the first four labs while the y-axis
shows the login duration in hours. Only the data from the first
four labs is presented because the number of students complet-
ing lab 5 and lab 6 was small in 2015 and 2016. In general,
within the labs of each year, the login durations of the top
students are consistently higher than those of the average stu-
dents, which in turn are consistently higher than those of the
underperforming students.

Students’ working time (working on labs) and idle time
(doing nothing while online) are further analyzed. Compared
with the average and underperforming students, those top stu-
dents not only spent more time in working but they also spent
more time thinking or daydreaming (i.e., idle)! Accordingly,
the students were encouraged to spend more time on the
experiment platform to improve their performance in the
course.

2) Analysis of Log Size: The log sizes for students with
different grades in different labs are shown in Fig. 4. Because
the number of students completing lab 5 and lab 6 was small
in 2015 and 2016, only the data from the first 4 labs are
presented.

In general, from 2015 to 2017, the online log of the students
keeps growing, indicating the students completed more work
in the experiments. The log size in 2018 reduces significantly
as a different logging scheme is adopted. Instead of using SSH
daemon, the jump server is used to perform logging since
2018, which is more concise.

Within the labs of each year, it is noteworthy that the log
sizes of excellent students are often more than two times that
of average students. In contrast, the log sizes for the under-
performing students, in general, are much less than that of the
average and top students. Therefore, the size of log generated
by a student seems to reflect the effort they spent on the exper-
iment, which may directly impact their performance. Within
the course, the log sizes of the students were monitored. Those
students with small log size were encouraged to work harder.

Fig. 4. Average log size of students with different scores.

Fig. 5. Average Git commit count.

Fig. 6. Average file open count.

3) Git Commit Count Over Years: As shown in Fig. 5, the
x-axis shows the years while the y-axis shows the average
Git commit count of the students. It seems that the average
Git commit count increases steadily over the years. A further
investigation of the submitted code shows that the students
are practicing the “code a little/test a little” programming
philosophy within the experiment platform. Most of the stu-
dents write some new code, then perform a Git commit to
trigger the automatic code evaluation system to help check
errors within their code. Therefore, the automatic code eval-
uation system is also helpful to cultivate their programming
habits.

4) File Open Count Over Years: The average file open
count of the students over the years is shown in Fig. 6.
Despite a small decrease in 2016, the average file open count
for a student gradually increases over the years in general.
The increase in the average file open count shows that the

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EDUCATION

Fig. 7. Average architecture-related file open count.

students tend to read or modify more OS code over the
years, which also reflects the increase in the difficulty of the
labs.

5) File Open Count of Architecture-Related Files: The file
open count for architecture-related files (bars on the right)
is shown in Fig. 7. These are mainly files written in assem-
bly languages related to the underlying MIPS architecture. In
2015, the students read only a few architecture-related files.
Since these architecture-related files are believed to be impor-
tant for the student to understand the OS implementation,
several questions on architecture-related OS implementation
are designed [20]. The students are asked to answer them in
their experiment report and in the oral defense when apply-
ing for an excellent grade in 2016. As a result, the students
read more architecture-related files to answer these questions
in 2016. In 2017, similar questions are also raised as home-
work. However, the students in 2017 got answers to some
of these questions from students in 2016 (which is hard
to prevent in homework). Therefore, the teaching plans are
adjusted in 2018 by designing tests that involved modifying
architecture-related files [21]. As a result, the students read
more architecture-related files in 2018.

VI. DISCUSSION

Tanenbaum and Woodhull [3] first proposed to learn the
principles of OS together with the implementation tech-
niques with the MINIX OS. Stanford University proposed
the Pintos [4] OS for OS projects. Their projects also pro-
vided an integrated online environment for programming and
automatic testing. Different from the OS labs of this article,
their projects were done by a team of students and their OS
experiment system did not highlight learning behavior track-
ing abilities. The CALEE [5] system provided a self-learning
assistant (SLAT) and a collaborative learning website (CLW)
to help the students learn OS with limited teaching resource.
The xv6 [6] OS was initially developed by MIT as a code com-
panion to help teach OS principles while the JOS [9] was used
for labs. In 2019, MIT changed the OS for its lab from JOS
to xv6. In 2015, Otero et al. proposed to design OS projects
with the objective of developing a MiniOS [7] from scratch.
Ziwisky et al. [8] proposed an educational OS for multicore
architecture. In [10], the University of Washington asked stu-
dents to build a small but the functional OS (Nachos OS) from

scratch. Subsequently, students ran a distributed application on
the network-enabled OS.

Learning behavior analysis is also valuable for teachers to
improve their teaching effectiveness. Many previous works
have studied the programming/learning behavior of students
based on different sources of data, such as programming
assignments [11], IDE/Web browser logs [12], and newsgroup
discussions [13]. In particular, Cleaver and Elbasyouni [14]
proposed to monitor the behavior of students when learn-
ing through interactive online tutorials. They used Web-based
parameter-passing strategies and cookies to help record the
learning behavior of students. Li and Tsai [15] analyzed the
learning behavior of students when using online learning
materials within a mobile phone programming course. They
monitored the students’ time spent accessing online learn-
ing materials to classify students into different clusters. They
found that those students who infrequently used any learn-
ing materials demonstrated lower motivation and learning
performance. In a comparison of students who intensively used
all learning materials and students who intensively used only
lecture slides, they found the former students had higher home-
work scores but both groups had similar final examination
scores.

An online platform is also useful to improve the teaching
effectiveness of labs. Arias et al. [22] proposed the COSTE
generic tele-education system for OS teaching. COSTE pro-
vided online courses, student training with practical com-
ponents, queries to the teacher, semiautomatic assessment,
and an automatic validation mechanism. Hassan et al. [23]
proposed an online laboratory for computer science education
using virtualization technologies. Jong et al. [24] proposed
the use of game-based cooperative learning in an OSs course.
They developed an online game to enable students to learn
cooperatively. They found that the desire to win the game
motivated the students to learn from online course materials
before playing the game, which in turn helped them achieve
better learning outcomes.

With the help of the Internet, massive open online
courses (MOOCs) are also gaining popularity these
years [25], [26]. An online experiment platform based
on the Internet is also promising since high-quality experi-
ment teaching resources can be shared across geographical
boundaries.

While most of the existing OS experiment platforms dis-
cussed above provide effective guidance to help students write
OS code, they are not explicitly designed to scale the experi-
ment course to a large number of students. In particular, the OS
experiment platform proposed in this article provides a scal-
able integrated development platform for programming and
code evaluation. Furthermore, while there are already many
systems to track the learning behavior of students during lec-
tures or labs, the platform proposed in this article aims at
providing effective learning behavior tracking within an online
OS experiment platform.

Therefore, the main contribution of this article is to propose
the integrated and scalable online OS experiment platform sup-
porting learning behavior analysis. Furthermore, the teaching
effectiveness of the OS experiment course is also thoroughly

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SCALABLE OS EXPERIMENT PLATFORM SUPPORTING LEARNING BEHAVIOR ANALYSIS 7

evaluated based on the learning data of 878 students over
four years.

VII. CONCLUSION

Effective teaching of the OS experiment course faces several
challenges. First, the learning curve is steep for the students.
Second, it is difficult to scale the experiment to a large number
of students. Third, it is difficult to gather the learning behaviors
of the students, which makes it impossible to provide feedback
to the teaching plan.

To address the above problems, the labs within the OS
experiment course are carefully designed so that the learn-
ing curve for students is gentle. Furthermore, a scalable OS
experiment platform is proposed, which can easily support
a large number of students with virtual machines and auto-
matic code evaluation techniques. Finally, the OS experiment
platform can also monitor the learning behaviors of the stu-
dents, which can effectively provide feedback to the teaching
plan.

Based on the OS experiment data gathered over four years,
the OS experiment can easily scale to a large number of stu-
dents without affecting learning effectiveness. Furthermore,
the behavior tracking mechanism can also effectively pro-
vide feedback during the learning process, which is crucial
for the teachers to provide personalized guidance in a short
time.

The findings of this article are useful for both the teachers
and the students of the OS experiment course. For the teachers
of the OS experiment course, the findings show that it would
be beneficial to provide step-by-step guidance for the students
in an OS experiment course. Furthermore, cloud computing
infrastructure, virtualization technology, and an automatic code
evaluation system are crucial to improve the scalability of the
OS experiment to a large number of students. Finally, learning
behaviors, such as login duration, log size, and file open count
are all useful features correlated with the performance of the
students in the course. The study clearly indicates that it would
be beneficial for the students to work on the projects based
on the step-by-step guidebook. Moreover, it is also valuable
for the students to keep an eye on their learning behaviors, to
analyze them, and to improve their learning effectiveness in
time, based on the analysis result.

There are two limitations with the current OS experiment
platform. First, the current platform is still not deployed on
the Internet. Public cloud computing infrastructure and docker
techniques may be used to make the experiment platform
available on the Internet in the near future. Second, the cur-
rent experiment platform and its related resources are still in
Chinese. Translating the experiment platform and the teach-
ing resources into English would make it useful for a broader
audience.

REFERENCES

[1] Joint Task Force on Computing Curricula, Computer Science Curricula
2013. New York, NY, USA: ACM Press, 2013.

[2] Operating System Engineering, Massachusetts Inst.
Technol., Cambridge, MA, USA, 2019. [Online]. Available:
https://pdos.csail.mit.edu/6.828/2018/overview.html

[3] A. S. Tanenbaum and A. S. Woodhull, Operating Systems: Design and
Implementation, vol. 2. Englewood Cliffs, NJ, USA: Prentice-Hall, 1987.

[4] The Pintos Project, Stanford Univ., Stanford, CA, USA, 2009.
[Online]. Available: https://web.stanford.edu/class/cs140/projects/pintos/
pintos.html

[5] E. T.-H. Chu and C.-W. Fang, “CALEE: A computer-assisted learning
system for embedded OS laboratory exercises,” Comput. Educ., vol. 84,
pp. 36–48, May 2015.

[6] R. Cox, M. F. Kaashoek, and R. Morris. (2019). XV6, A
Simple Unix-Like Teaching Operating System. [Online]. Available:
https://pdos.csail.mit.edu/6.828/2019/xv6.html

[7] R. R. Otero and A. A. Aravind, “MiniOS: An instructional platform for
teaching operating systems projects,” in Proc. 46th ACM Technol. Symp.
Comput. Sci. Educ., Feb. 2015, pp. 430–435.

[8] M. Ziwisky, K. Persohn, and D. Brylow, “A down-to-earth educational
operating system for up-in-the-cloud many-core architectures,” ACM
Trans. Comput. Educ., vol. 13, no. 1, 2013, Art. no. 4.

[9] The JOS Operating System, Massachusetts Inst. Technol., Cambridge,
MA, USA, 2019. [Online]. Available: https://pdos.csail.mit.edu/
6.828/2007/

[10] T. Anderson. (2019). Not Another Completely Heuristic Operating
System. [Online]. Available: https://homes.cs.washington.edu/
∼tom/nachos/

[11] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato, D. Kim,
and B. Tretola, “Comparing effective and ineffective behaviors of student
programmers,” in Proc. 5th Int. Workshop Comput. Educ. Res., 2009,
pp. 3–14.

[12] M. Fuchs, M. Heckner, F. Raab, and C. Wolff, “Monitoring students’
mobile app coding behavior data analysis based on IDE and browser
interaction logs,” in Proc. IEEE Global Eng. Edu. Conf. (EDUCON),
İstanbul, Turkey, 2014, pp. 892–899.

[13] D. Hou and L. Li, “Obstacles in using frameworks and APIs: An
exploratory study of programmers’ newsgroup discussions,” in Proc.
IEEE 19th Int. Conf. Program Comprehension (ICPC), Kingston, ON,
Canada, 2011, pp. 91–100.

[14] T. G. Cleaver and L. M. Elbasyouni, “Student online assessment
behaviors,” IEEE Trans. Educ., vol. 48, no. 3, pp. 400–401, Aug. 2005.

[15] L.-Y. Li and C.-C. Tsai, “Accessing online learning material:
Quantitative behavior patterns and their effects on motivation and learn-
ing performance,” Comput. Educ., vol. 114, pp. 286–297, Nov. 2017.

[16] Operating System Experiment Guide Book (in Chinese),
Beihang Univ., Beijing, China, 2019. [Online]. Available:
http://jiangbo.buaa.edu.cn/OSLabGuide.pdf

[17] M. Guzdial, “What’s the best way to teach computer science
to beginners?” Commun. ACM, vol. 58, no. 2, pp. 12–13, 2015,
doi: 10.1145/2714488.

[18] R. R. Otero and A. Aravind, “MiniOS: An instructional platform for
teaching operating systems labs,” CoRR, vol. abs/1811.09792, pp. 1–32,
Dec. 2018.

[19] X. Chen, L. Breslow, and J. DeBoer, “Analyzing productive learning
behaviors for students using immediate corrective feedback in a blended
learning environment,” Comput. Educ., vol. 117, pp. 59–74, Feb. 2018.

[20] Architecture Related Questions Used in OS Experiment Labs,
Beihang Univ., Beijing, China, 2019. [Online]. Available:
http://jiangbo.buaa.edu.cn/Architecture.pdf

[21] Architecture Related Lab Tests, Beihang Univ., Beijing, China, 2019.
[Online]. Available: http://jiangbo.buaa.edu.cn/archLabs.pdf

[22] J. J. P. Arias, J. G. Duque, R. D. Redondo, and A. F. Vilas, “COSTE:
Open environment for teaching in computer science area,” in Proc.
Frontiers Educ. Conf., vol. 3. San Juan, Puerto Rico, USA, 1999,
Art. no. 13B9/14.

[23] D. M. Hassan, D. Leclet, and B. Talon, “An online laboratory in a
context of project-based pedagogy,” in Proc. 9th IEEE Int. Conf. Adv.
Learn. Technol., Riga, Latvia, 2009, pp. 128–130.

[24] B.-S. Jong, C.-H. Lai, Y.-T. Hsia, T.-W. Lin, and C.-Y. Lu, “Using game-
based cooperative learning to improve learning motivation: A study of
online game use in an operating systems course,” IEEE Trans. Educ.,
vol. 56, no. 2, pp. 183–190, May 2013.

[25] T. R. Liyanagunawardena, A. A. Adams, and S. A. Williams, “MOOCs:
A systematic study of the published literature 2008–2012,” Int. Rev. Res.
Open Distrib. Learn., vol. 14, no. 3, pp. 202–227, 2013.

[26] N. Lung-Guang, “Decision-making determinants of students partic-
ipating in MOOCs: Merging the theory of planned behavior and
self-regulated learning model,” Comput. Educ., vol. 134, pp. 50–62,
Jun. 2019.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2714488

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EDUCATION

Lei Wang received the B.Sc. degree in computer science from Shenyang
Jianzhu University, Shenyang, China, in 1991, the M.Sc. degree from Harbin
Engineering University, Harbin, China, in 1994, and the Ph.D. degree from
Beihang University, Beijing, China, in 1998.

He is an Associate Professor with the School of Computer Science and
Engineering, Beihang University. His research interests include operating
system, complex networks, and compiler.

Ziqi Zhen received the B.S. degree from the School of Computer Science
and Engineering, Beihang University Beijing, China, where he is currently
pursuing the M.S. degree in computer engineering.

His current research interests include operating system, embedded system,
and deep learning acceleration.

Tianyu Wo received the Ph.D. degree from Beihang University, Beijing,
China, in 2008.

He is an Associate Professor with Beihang University. He has been
authorized more than 30 patents. His research interests include software of dis-
tributed system, system virtualization, spatial–temporal data processing, and
applications in Internet of Vehicles. He has published over 70 papers in the
above areas.

Bo Jiang (Member, IEEE) received the Ph.D. degree from the University of
Hong Kong, Hong Kong.

He is an Associate Professor with the School of Computer Science
and Engineering, Beihang University, Beijing, China. His research has been
reported in leading journals and conferences, such as ASE, FSE, ICWS, QRS,
TSC, TRel, the Journal of Systems and Software, Information and Software
Technology, and SPE. His current research interests focus on software testing,
debugging, and blockchain technology.

Hailong Sun (Member, IEEE) received the B.S. degree in computer sci-
ence from Beijing Jiaotong University, Beijing, China, in 2001, and the Ph.D.
degree in computer software and theory from Beihang University, Beijing, in
2008.

He is an Associate Professor with Beihang University. His
research interests include intelligent software engineering, crowd
intelligence/crowdsourcing, and distributed systems.

Dr. Sun is a member of the ACM.

Xiang Long received the B.S. degree in mathematics from Peking University,
Beijing, China, in 1985, and the M.S. and Ph.D. degrees in computer science
from Beihang University, Beijing, in 1988 and 1994, respectively.

He has been a Professor with Beihang University since 1999. His research
interests include parallel and distributed system, computer architecture,
embedded system, and multi/many-core-oriented operating system.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 25,2020 at 14:23:12 UTC from IEEE Xplore. Restrictions apply.

